Rapid detection of genomic imbalances using micro-arrays consisting of pooled BACs covering all human chromosome arms

نویسندگان

  • Jeroen Knijnenburg
  • Marja van der Burg
  • Philomeen Nilsson
  • Hans Kristian Ploos van Amstel
  • Hans Tanke
  • Károly Szuhai
چکیده

A strategy is presented to select, pool and spot human BAC clones on an array in such a way that each spot contains five well performing BAC clones, covering one chromosome arm. A mini-array of 240 spots was prepared representing all human chromosome arms in a 5-fold as well as some controls, and used for comparative genomic hybridization (CGH) of 10 cell lines with aneusomies frequently found in clinical cytogenetics and oncology. Spot-to-spot variation within five replicates was below 6% and all expected abnormalities were detected 100% correctly. Sensitivity was such that replacing one BAC clone in a given spot of five by a BAC clone from another chromosome, thus resulting in a change in ratio of 20%, was reproducibly detected. Incubation time of the mini-array was varied and the fluorescently labelled target DNA was diluted. Typically, aneusomies could be detected using 30 ng of non-amplified random primed labelled DNA amounts in a 4 h hybridization reaction. Potential application of these mini-arrays for genomic profiling of disseminated tumour cells or of blastomeres for preimplantation genetic diagnosis, using specially designed DNA amplification methods, are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-wide genetic characterization of bladder cancer: a comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis.

Most human cancers are characterized by genomic instability, the accumulation of multiple genetic alterations, and allelic imbalance throughout the genome. Loss of heterozygosity (LOH) is a common form of allelic imbalance, and the detection of LOH has been used to identify genomic regions that harbor tumor suppressor genes and to characterize different tumor types, pathological stages and prog...

متن کامل

Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells.

Chromosomal aneuploidies are observed in essentially all sporadic carcinomas. These aneuploidies result in tumor-specific patterns of genomic imbalances that are acquired early during tumorigenesis, continuously selected for and faithfully maintained in cancer cells. Although the paradigm of translocation induced oncogene activation in hematologic malignancies is firmly established, it is not k...

متن کامل

Development of an Alu-PCR Amplified YAC Probe Suitable for Enumeration of Chromosome 13 on Uncultured Lymphocytes and Amniocytes by Fluorescence in situ Hybridization

The main objective of the present study was to develop an efficient and reliable probe to be routinely used for detection of chromosome 13 copy numbers by interphase FISH. To achieve this, a Yeast Artificial Chromosome (YAC) containing sequences specific for human 13q12 (744D11), was cultured and the whole yeast genomic DNA was extracted. The human insert within the isolated DNA was amplified b...

متن کامل

Reliable high-throughput genotyping and loss-of-heterozygosity detection in formalin-fixed, paraffin-embedded tumors using single nucleotide polymorphism arrays.

Most human cancers show genetic instabilities leading to allelic imbalances, including loss of heterozygosity (LOH). Single nucleotide polymorphism (SNP) arrays can be used to detect LOH. Currently, these arrays require intact genomic DNA as obtained from frozen tissue; however, for most cancer cases, only low-quality DNA from formalin-fixed, paraffin-embedded (FFPE) tissue is available. In thi...

متن کامل

Allelic imbalances in human bladder cancer: genome-wide detection with high-density single-nucleotide polymorphism arrays.

BACKGROUND Bladder cancer is characterized by genomic instability. In this study, we investigated whether genome-wide screening using single-nucleotide polymorphism (SNP) arrays could detect allelic imbalance (loss or gain of at least one allele) in bladder cancers. METHODS For microarray analysis, DNA was isolated from microdissected bladder tumors and leukocytes from 11 patients. The stage ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005